Faults become more and more responsive to stress perturbations as instability mounts. We utilize this property in order to identify the different phases of the seismic cycle. Our analysis provides new insights about the features of impending mainshocks, which are proposed to emerge from a large-scale crustal-weakening preparation process whose duration depends on their seismic moments, according to the power-law T ∝ M^1/3 for M ≤ 10^19 N m. Moreover, further studies are performed about the impact of tidal stress perturbation on seismicity; in particular, the relationship between frequency-magnitude scaling and perturbations is discussed, showing that the sensitivity of earthquakes to solid Earth tides decreases as their magnitudes increase.
Recent Posts
- Are Foreshocks Fore-shocks?
- Fault dip vs shear stress gradient
- Clustering Analysis of Seismicity in the Anatolian Region with Implications for Seismic Hazard
- Global versus local clustering of seismicity: Implications with earthquake
prediction - The impact of faulting complexity and type on earthquake rupture dynamics
Recent Comments
No comments to show.